QMC integration for lognormal-parametric, elliptic PDEs: local supports imply product weights
نویسنده
چکیده
We analyze convergence rates of quasi-Monte Carlo (QMC) quadratures for countablyparametric solutions of linear, elliptic partial differential equations (PDE) in divergence form with log-Gaussian diffusion coefficient, based on the error bounds in [James A. Nichols and Frances Y. Kuo: Fast CBC construction of randomly shifted lattice rules achieving O(N−1+δ) convergence for unbounded integrands over R in weighted spaces with POD weights. J. Complexity, 30(4):444-468, 2014]. We prove, for representations of the Gaussian random field PDE input with locally supported basis functions, and for continuous, piecewise polynomial Finite Element discretizations in the physical domain error bounds in weighted spaces with product weights that exploit localization of supports. The convergence rate O(N−1+δ) (independent of the parameter space dimension s) is achieved under weak summability conditions on the expansion coefficients.
منابع مشابه
Fast QMC Matrix-Vector Multiplication
Quasi-Monte Carlo (QMC) rules 1/N ∑N−1 n=0 f(ynA) can be used to approximate integrals of the form ∫ [0,1]s f(yA) dy, where A is a matrix and y is row vector. This type of integral arises for example from the simulation of a normal distribution with a general covariance matrix, from the approximation of the expectation value of solutions of PDEs with random coefficients, or from applications fr...
متن کاملMulti-level Higher Order Qmc Galerkin Discretization for Affine Parametric Operator Equations
We develop a convergence analysis of a multi-level algorithm combining higher order quasi-Monte Carlo (QMC) quadratures with general Petrov-Galerkin discretizations of countably affine parametric operator equations of elliptic and parabolic type, extending both the multi-level first order analysis in [F.Y. Kuo, Ch. Schwab, and I.H. Sloan, Multi-level quasi-Monte Carlo finite element methods for...
متن کاملA qMC-spectral method for elliptic PDEs with random coefficients on the unit sphere
We present a quasi-Monte Carlo spectral method for a class of elliptic partial differential equations (PDEs) with random coefficients defined on the unit sphere. The random coefficients are parametrised by the Karhunen-Loève expansion, while the exact solution is approximated by the spherical harmonics. The expectation of the solution is approximated by a quasi-Monte Carlo integration rule. A m...
متن کاملQuasi-Monte Carlo Finite Element Methods for a Class of Elliptic Partial Differential Equations with Random Coefficients
In this paper quasi-Monte Carlo (QMC) methods are applied to a class of elliptic partial differential equations (PDEs) with random coefficients, where the random coefficient is parametrized by a countably infinite number of terms in a Karhunen-Loève expansion. Models of this kind appear frequently in numerical models of physical systems, and in uncertainty quantification. The method uses a QMC ...
متن کاملQuasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
In this paper we analyze the numerical approximation of diffusion problems over polyhedral domains in R (d = 1, 2, 3), with diffusion coefficient a(x, ω) given as a lognormal random field, i.e., a(x, ω) = exp(Z(x, ω)) where x is the spatial variable and Z(x, ·) is a Gaussian random field. The analysis presents particular challenges since the corresponding bilinear form is not uniformly bounded ...
متن کامل